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In this paper we obtain an exact solution of the problem of diffraction 

of a transient plane elastic wave, with no resistance, propagated in 

three-dimensional space and striking against an edge in the form of a 

half-plane. The problem is solved by the method of functional-invariant 

solutions of V.I. Smirnov and S.L. Sobolev. 

1. Consider the diffraction picture due to the motion of a plane 

elastic wave in space (x, y, z 1, which is occupied by a homogeneous iso- 

tropic elastic medium and in which a cut in the form of the half-plane 

y = 0, x > 0 has been made; the edge of the cut is fixed, i.e. the elastic 

displacement is equal to zero on this hal.f-plane. ‘lhe analogous diffraction 

problem for acoustic waves in a fluid was solved by Sobolev in [ 1; p.6141 . 

It is known (see [ 1; pp.471-4731 > that if there are no external- forces, 

the displacement vector fu, ur wf can be written in the form 

(u, r, W) = grad y + rot (J (I.11 

where the scalar potential 95 and the vector potential I/J = (I,?,, I$, $1 

satisfy the equations 

dien l/a and l/b are the velocities of the longitudinal and transverse 

waves, respectively, On the fixed boundary (in our case on both sides of 
the half-plane y = 0, x > 0) the boundary conditions 

hold. 
u = 0, v = 0, W=O (1.3). 

It is required to investigate the diffraction picture resulting from 
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the motion of the plane longitudinal wave 

Y(kG Y, 2) =f(t ---~--c15 -t-C&), Q(& 2, y, z) = 0 (1.4) 

where f(s) = 0 for s < 0. The diffraction problem of the plane transverse 

wave is reducible to three diffraction problems as follows: 

Each of these three problems is solved by the same method as the 

diffraction problem of the wave (1.4). We shall, therefore, confine the 

discussion to the solution of the diffraction problem for waves of the 

form (1.4). We shall assume that c > 0 in (1.4), since the case c < 0 

reduces to that of c > 0 if z is replace11 by - z and the case c - 0 is 

the plane problem* treated previously in [ 21. 

At each instant of time t the front of the incident wave is a plane 

intersecting the axis Oz at the point z = t/c. 'Ihis point is the vertex 

of the cone t - CL > [ (a* - c2ffx2 + y2>] Ii2 occupied by the diffracted 

waves (analogous to [ 1; p. 6151 ). 

In the exterior of the cone there are only plane waves: the incident 

wave (1.4) and the two waves (the longitudinal and the transverse) re- 

flected from the fixed boundary. At arbitrary t = to the picture of the 

fronts of the wave in the plane section z = z0 is the one given in Fig.1 

for t > cZo (if t < czO, then the front of the wave in the section con- 

sidered has not yet reached the cut). 

It is sufficient to solve the problem for the case 

f(s)=0 f_pr s<0, f(s)=s for s>O (l.5) 

in (1.4), since an arbitrary wave of the form (1.4) can be obtained by 

superposition of such waves. 

2. We introduce the notation 

l It can be verified that if we put c = 0 in the solution obtained in 
this paper and then differentiate the solution with respect to t (in 

order to pass from the initial conditions of the form (1.4) considered 

here, where f(s) = s for s > 0, to the final conditions of [ 21 , where 

f(s) = 1 for s > 01, then the solution of [ 21 is obtained. 
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al 
2 = a2 - ~2 , b,2 = b2 - c2 

(2.1) 

Ry (1.1) we have (u,, vO, w,) + (u,, vl, w,) = (u, V, w). In analogy 

with [ 1; p. 6151 we shall seek a solution depending only on the three 

variables x, y, t. = t - cz. From (1.2) it follows that each of the func- 

tions uO, vO, w0 
I 

satisfies 

and that each of 

From (2.1) we 

2 a%” aauo 
a1 a@-=- + a$ (2.2) 

the functions ul, vvl, w1 satisfies 

b 

obtain 

(2.3) 

au0 aw” 
-Cz=p 

avo a 11Jo 

-Catl=q’ 2 + '2 = c$ (2.4)‘ 

The boundary conditions (1.3) can 

uo + u1= 0, 80 f% = 0, 

C 

Noting that (1.2)*and (:.4) imply 
k 

(f.;) ihat 

we obtain c2 = al - k2. It 

u. = u. = w. =ui = 201 = ?,+ = 0 

be written as 

wo+wl=O for 7~~0, x>O (2.5) 

for ?1-kkz+T/a12-kzy<0 (2.6) 

u1 = zj = Wl = 0, u. = -k, u. = 7/q” - k2, wo=-c (2.7) 

for t~-kz+~u~2-kk2y>0 

For t1 > 0 we have the picture shown in Fig. 1. Obviously, (2.6) holds 

in the regions MKx and M,C,AKx (b e ore the wave front), and (2.7) holds f 

in the region to the left of the curve MKCA,C,M, (that is, those places 

on the front of the incident wave not yet reached by the reflected and 

diffracted waves). The regions ACK and AEDK contain the waves reflected 

from the plane boundary Ox in accordance with the boundary conditions 

(2.5). 

In the usual way (see [ 2; p. 6891 ) we obtain 

uo= P, 80 = 4, wo=r in the region ACK 

Ul = -P, VI - -_4, WI = -r in the region AEDK 



992 A. F. Fi 1 ippov 

p=- 
2kV ~ a,2 _ k” If b,? _ ,+Z 2 (k2 -I- ~2) vu13 - k2 

F(k) ’ 
Q= F(k) -- (2.8) 

___ - 
~ = _ 2c 1/11,2 - k2 I/b,? - k2 

-- 

F(k) ’ 
F (k) = k2 + c2 + r/u,“- k2 l/b12 - k” 

An arbitrary function Cr,(y ) can be written as half the 
s"r 

of the even 

function @+ (y) = cP(y ) + a(- y) and the odd function Cp- y h CD (y) = 

@(- y). We shall denote by uOo, uo*, woo, ulo, v~*, wlo the even func- 

tions of y 

%O(fl, xc, y) = ua(ti, z, Y) + urJ(t,, 5, -y) 

rO*(tlr 5, Y) = 2.'0 (t1, 2, y) + z$(t,, z, -3) 

etc. and by uo*, vo.', wo*, ul*, vl', wl* the odd functions of y 

llO*(tlr z, y)= &J(t,, 5, Y)--o(t,, 2, -Y) . 

etc. where u w is a solution of the problem (2.1)-(2.7). It is 

obvious that"~o'l'~/2tu ' + u *) 

functions u O, O 00 o" 0 
etc. and that each of the systems of 

satisfies (&.2)y"(!?.y?,'(g!4\ 

' and u * * * * 

>d'thwh bounda~y'c~~d~t~~n'(U215j. 

* 
211 , y* 

We shall first find the functions uoo, voo, woo, ul', vi', wl'. It 

follows from (2.6) and (2.7) that these functions are homogeneous of 

order zero in tl, x, y for 

geneous for t1 > 0 as well. 

be sought in the form 

UoC = He U, (O,), 

u>o= ReUi Pi), 

tl < 0. Therefore, the solution will be homo- 

According to [l; p. 5141 such a solution can 

coo = Re V,(fl,), woo = Re W’, (0,) 

UrO = Re Vi(O,), wi" = Re W,(O,) 
(2.9) 

where Uo, Vo, . . . . WI are analytic functions of the complex variables 

8, = 0 $- iTo, 0, = a + ir, 

t1x 
c=- 

Y Vt12 - aI2 (x2 + 9) 
x2 + Y2 

? 
0 

= 

x2 + Y2 
I 

?1 = Y vh2 - h2 (x2 + ~9 
x2 + Y2 

(2.10) 

From (2.4) we obtain 

1/ /a12 - ewe (e) - w’, (e), cUo’ (e) = 8WO (e) 

cVo’ (e) = l/al” - e2 W, (e) (2.11) 

8U1’ 03) + 1/b12 - fJ2V,’ (0) + cW1’ (0) = 0 

Ihe radicals are to be considered continuous for Im 8 >/ 0 and positive 

for- a 1 < 0 < al. 

Because the functions uOo, woo, ulO, 70~' are even in y and the functions 
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0 
“0 ’ “1 ’ are odd in y, it is sufficient to consider the functions Uo!,(e), 

. ..) W (0) only in the upper half-plane. In the same way as in [2; SC- 
tion 2\ we obtain the following conditions which the functions U,(e), 

. . . . W,(8) must satisfy on the real axis: 

ImU,' = 0, Rev/,@)= 0, ImMJO' (0) = 0 for -x <fj < - UI (2.12) 

ImU,‘(8) = 0, ReV,(e)=O, ImIV,'(8)=0 for--<Oe-bb, (2.13) 

ReU,, (0) =-2k, ReV,(0)= 0, ReW,(8) = - 2~ for--n, <e <k (2.14) 

ReU, (e) = 0, ReT,',@) = 0, ReTV, (0) = 0 for -bbl <B <k (2.15), 

ReU, (0) = p, Re V,(e) = qz lb W, (0) = I’ 

Re U, (e) = - p, Re V, is) = - 4, Re bt’, (fl) = _ I’ fo* k ce < u1 (‘,.16) 

Re W, (0) + u, (0)) = 0, me (b (0) + v, (0)) = 0 

Re w’, (0) + J+‘, P)) = (J 
for al C-0 < + 3~ (2.17) 

3. We shall find functions U,(8), . . . . lf’l(0), which are regular in the 

upper half-plane and satisfy (2.11) and also satisfy the boundary condi- 

tions (2.12)-(2.17) on the real axis. It follows from (2.12)-(2.17) that 

Re[ V,(e) + V,(0)] = 0 on the real axis. Therefore,* 

I/', (9) + 17, (e) z 0 (3.1) 

Ry means of (2.11) and (3.1) we express the functions U,', Vo’, II,‘, 

V,’ in terms of Wo' and W,‘, I!sing also (2.17), we obtain 

.~ .~ 
ReF(e)W,'(e) = 0 h w_enal<e<i-ao(F(e)=e*$c"i1/n,'-e0'1/0,2-ei!) 

(3.2 j 
From (2.12), (2.14) and (2.16) we obtain 

ImIV,‘(e) = 0 for - oooe8---a, 

ReW,'(8) = 0 for -~~<8<kandk<fl<a, 

and for 8 = k the function W,‘(e) has a pole with principal 

i 
wo’ (0) - i(;,“_“,“i = ~ 2c (k2 + c2) 

R (0 -k) F (k) 

From (3.2) and (3.3) we know arg W,‘(e) is wholly on 

order to find H','(e) we construct a function F1(t9) such 
the 

that 

(3.3) 

part 

t3.4) 

real axis. In 

l In view of the considerations at the beginning of Section 3 of [ 21, 
we shall seek the simplest particular solution of the problem (2. ll)- 

(2.17), i.e. a solution with the minimum number of singularities on 
the real axis and at infinity. 
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(a 

'Ihen F,(w) = 1; on the real axis F. (0) = 0, except for the interval 

b ), 

(31;) &at 

where arg F,(O) = - arg F(8). It now follows from (3.2) and 

Re fv (e) @TX _ ff 
P, (tr) -- 

is wholly on the real axis, except at the point 0 = k, where there is a 
pole. Therefore, 

(3.6) 

From (3.4) we obtain 

B = 2c(k2+ ~9 P'//C 
Z&‘(k) P, (k) 

The constant A wilt be determined later. From (2.17) and (2.11) it 

follows that 

RecU,' = ReOW,' for O> "] 

From this and from (2.13), (2.15) and (2.16) it follows that 

Re [(cU, (0) - W,‘(Q)) l/bl + O] = 0 for - iy) < 0 < f 00 (3.7) 

Equations (2.15), (2.161, (2.11) and (2.R) imply that Re (cL'~-- 13W,) 

is continuous at 0 = k; hence the function cUI' - OW'%' does not have a 

pole, there. Using (3.71, we write 

CU,’ (0) - OW,’ (8) = iD 
Vbl-tQ 

(3.8) 

From f2.1), (3-l), (3.61, (3.8) we find all six of the required func- 

tions 

U,’ (0) = 4 IV,’ (0) = ioF5_E IA + $L) , 
c j/q + 0 \ 

u,’ (0) = $ W,’ (Q) + c vb;o 

T/,’ (6) = - v,’ (0) = i v~l (e) (A T_ z> 
0-k 

WI’ 60 = j&y2 Fz (0) jh - 0 vc6,2 A -i- A; - v!!& 
i 

(3.9) 

%k find the constants A and D from the condition of regularity of the 
functions UIB and 'VI' at the point 8 = ic. to do so, we must put the 
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expression in the square brackets in (3.9) equal to zero for 8 = ic, i.e. 

Fr (ic) 1/ar 
-p 

- ic I//o, + ic vb12 + c2 (A + &-) - icD = 0 

Putting the real part of this expression equal to zero, we find 

A= (3.10) 

and putting the imaginary part equal to zero, we find D. Fe show that the 

denominator in (3.10) does not vanish. Indeed, 0 < a1 < 6, and c > 0 imply 

that 
-- 

2 * < arg(Va, -- - ic 1/b, + ic) < 0 

and (3.5) implies that 

arg F, (ic) = Im In FJic) < i, 1; I mACdt< : 
a, 

Hence 
-- 

I arg (RI (ic) v a, - ic vb, + ic) 1 < $ IT 

and the denominator in (3.10) is not zero. Therefore, the functions UO', 
. . . . It’,’ have been determined. Taking (2.14 and (2.15) into account, we 

and then from (2.9) we 

In the region REA (see 

imaginary, the functions 
determined in the same way 

in [2; Section 2; para- 

4. To find the functions uo*, . . . . WI*, 

4x . Fig. 1. 
we write 

zig* = Re U,*(fJ,), . . . ,wl* = ReWr'(0, j 

in analogy with (2.9), where 8, and 8, are the same as in (2.10). lhe 

functions II *, W * will satisfy the same relations (2.11), but in- 

stead of (2!12):i2>14! h t ey will satisfy the following boundary conditions 

ReU,'(6) = 0, ImV,"(0) = 0, ReW,'(O)= 0 for -oc < 0 <a, (4.1) 

ReU,‘(O) = 0, ImV,"(0)= 0, ReW,‘(O) = 0 for - 00 < 8 < -b, (4.2) 

Re U,*(e) = 0, ReVa' = 21/ar2-- k2 

Re W,‘(O) = 0 for --a,<O<k (4.3) 
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WI* 

Conditions (2.15)-(2.17) remain in force for the functions II,,*, . . . . 
as well. 'Ihese conditions imply that 

Re (U,l + U,‘) = 0, Re (TV,* + W;) = 0 

for-m< O<ca. 

Therefore, instead of a single equation (3.1) we obtain two: 

u;+ U1'= 0, W,'+W,'=0 

'Ihe rest of the discussion proceeds as in Section 3 and we obtain 

Fy'p) = _~w,*'(rJ) = f U,"(O) = - ; u,*'(e) = iE =I @) (4.4) 

-- 

V,” (e) = 
i!? I/b, - 0 V/al2 - VF, (0) 

7 VI” ((3) = 
il? (V + c*) F1 (fl) 

c (0 - k) 
c (0-k) r/b, + 0 

where the function F,(8) is the same as in (3.5) and 

- - - - 

EC- 
2c~/a,“--kka~b, + k 4c Jffl,z - k2 I/b, + kF, (-k) 

= - aF (k) F1 (k) 5~ (~2 + bl” + Xc”) (4.5) 

nOCTyIlAJItl 
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